
www.manaraa.com

Give the People What They Want: Studying Non-
Programmers Describing End-User Web Programming

Tak Yeon Lee
tylee@umd.edu

Benjamin B. Bederson
bederson@cs.umd.edu

Human-Computer Interaction Lab,
University of Maryland, College Park, MD 20742 USA

ABSTRACT
Understanding end-user's needs is a prerequisite for
designing End-User Programming (EUP) environments.
This paper reports on two qualitative studies that answer the
following questions: 1) what do end-users want to improve
on the Web; and 2) how do end-users without programming
knowledge describe computational tasks? For the first
question we asked 35 Web users about their daily activities
and problems on the Web, and how they would improve it.
As a result of this, we proposed functional requirements of
future WebEUP systems that enable end-users to create,
modify, and extend extensions with rich design details and
interactivity. The second study focused on non-
programmer’s mental models about computational tasks.
The interviewer asked 13 non-programmers to describe
three programs (drawing a histogram, creating a custom
filter, and combining information from multiple web
pages). We summarized existing challenges and suggest
design implications for building an easy, efficient, and
expressive WebEUP system.

Author Keywords
End-User Programming; User Study; Mashup

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Over the decades, the Web has become the most popular
and convenient workbench for individuals and businesses in
an incredible number of activities. Ironically, people are
putting equal or even more time and effort in some
activities, because of higher expectations and complexities.
For example, online shoppers, who once had been happy
with ordering products in a few clicks, now want to
compare prices on different malls and even track the daily
prices. Readers look for better tools for managing ever-
growing channels of information. Fraudulent sites and
deceptive opinion spam are huge concerns for consumers
[21]. Doing repetitive tasks on poorly designed Web pages
can be more painful than paper-based work environments,
which are inefficient but malleable.

When the original site could not support the ever-increasing
expectations and complexities of end-users, mashups [6, 28,
29, 31], browser extensions and scripts [1, 15, 18, 32] built

by third-party programmers have improved the Web.
Unfortunately, there are not enough third-party developers
to address all 1.4 billion end-user's needs of 175 million
websites [27]. Enabling the end-users to address their own
needs is the goal of Web end-user programming (WebEUP)
[4, 24].

Nevertheless, to build an easy, efficient, and expressive
WebEUP system, we need a better understanding about
Web users. Zang and Rosson [31] conducted a survey about
popular mashups, but did not examine further than top-level
categories (e.g. Blocking ADs). Although live collections
such as the Chrome Web Store and ProgrammableWeb
cover many common tasks, they cannot directly tell what
end-users would like to use. Besides, as end-users mostly
have no programming knowledge, we need to understand
common challenges and opportunities to support them
building programs for their specific needs. Artificial
Intelligence now offers the potential of making it possible
for end users to do much more than they ever could when
they had to code every detail manually.

To better understand the potential of supporting end users
to computationally customize their own environments, we
conducted two qualitative studies that answer the following
questions: 1) what do end-users want to improve on the
Web; and 2) how do end-users without programming
knowledge describe computational tasks?

In the first user study, we interviewed 35 Web users,
observing 10 types of Web improvements that showed great
potential. These include a wide spectrum of design details
including runtime interactivity and extensibility. Based on
these findings, we propose 7 functional components of
future WebEUP systems. The second study focused on non-
programmer’s mental models about computational tasks. 13
non-programmers were asked to describe three programs
doing simple computational tasks through conversational
dialogues. Based on the challenges and opportunities found,
we propose design implications for easy, efficient, and
expressive WebEUP systems.

This paper's contributions are: 1) a description of the needs
of current Web users, and a proposal of features of future
WebEUP systems; 2) an examination of how non-
programmers naturally describe computational tasks; and 3)
a description of design implications.

 ACM copyright: ACM holds the copyright on the work. This is the
historical approach.

www.manaraa.com

END-USER PROGRAMMING ON THE WEB
Over the last decade, researchers and companies have
developed a large number of WebEUP systems [4]. Those
WebEUP tools commonly took a combination of three
approaches: scripting, visual programming, and
programming by demonstration (PBD). First, script
languages for WebEUP [1, 15, 32] have simpler, more
human-readable syntax than general-purpose languages
(e.g. C or Java). However, end-users of script languages
still need to learn complex language syntax and specify
every detail manually. In order to make programming more
accessible to non-programmers, many EUP systems
employed visual programming techniques such as drag-
and-drop for organizing graphical widgets of operations,
flowcharts showing program structure [29, 33] and
spreadsheets organizing large datasets [28]. While being
effective for small educational projects (e.g. simple games
and interactive animations), visual programming is often
criticized for being less expressive and hard to
accommodate large programs, so called Deutsch Limit 1–
“50 visual primitives on the screen at the same time”. Due
to these limitations, neither scripting nor visual
programming approaches have resulted in easy, efficient,
and expressive WebEUP systems yet.

Recently, more general EUP systems started using AI-based
approaches to automate programming. Mixed-initiative
interaction [11, 13], Programming-by-Demonstration
(PBD) [5], and Programming-by-Example (or example-
driven program synthesis) [10, 23, 30] allowed end-users to
express program specifications in various ways, and then
generate or search programs consistent with the
specifications [23]. For instance, researchers have shown
that AI can automatically synthesize simple programs such
as string manipulation [10], text processing [30], and
geometric drawing [3].

WebEUP systems also have begun applying PBE
techniques. Tommim et al [27] allowed end-users to attach
UI enhancements to arbitrary sites by selecting a few
elements on the page. Nicholas and Lau [20] enabled end
users to re-author a simplified mobile version of web
applications by demonstrating the task and directly
choosing page elements. Macias and Paterno [16] allowed
users to modify the source code of a web page, and then the
system creates a generalized modification of similar pages.
We believe that similar AI-based techniques will have
bigger roles in future EUP systems. Designing such systems
would demand careful considerations of how the end-users
and the computer work together.

STUDY 1: WEB END-USER PROGRAMMING NEEDS
Understanding end-users' needs is crucial when designing
EUP systems [25]. This study explored the needs by asking

1 Peter Deutsch made the comment at a talk on visual
programming by Scott Kim and Warrent Robinett.

Web users about their daily activities and problems they
experience on the Web, and how they would improve the
Web to create a better experience. As a result, we propose a
set of functional requirements that would be beneficial
when designing future WebEUP systems.

The data that was gathered for this study consisted of an on-
line questionnaire and in-depth interview with 35 active
Web users of varying gender (14 men and 21 women),
programming expertise (10 out of 35 had programming
experience), and age (between 24 and 37, avg. = 30.8). The
subjects were recruited through word-of-mouth, university
mailing lists, and social networks. We asked them about
their daily activities on the Web, and how to enhance their
experience by improving those web sites.

In the beginning of the study we tried to gather data using
an online questionnaire containing 5 types of common
problems and solutions: mashing up information from
linked pages, removing unwanted information (e.g. ADs),
summarizing web contents, auto-filling input forms, and
converting dates and currency. Thus the participants
answered how often they experience each type of problems
and described similar experiences they had. The result was
assuring that they want to improve the given situations.
However, we soon realized that the answers, which were
gathered from the questionnaire, were neither rich enough
to tell how they experience the problem or novel beyond the
given examples. We thus changed our approach to conduct
an in-depth interview without any example first, and then to
show those examples only when the participant could not

Figure 1. Concept map of the Web improvement ideas
suggested by the participants.

www.manaraa.com

understand the question. This approach was effective at
gathering diverse unexpected input and focusing on the
research question.

Method
We analyzed the data using a qualitative method inspired
by grounded theory [2, 9]. First, we applied “open coding”
to determine the range of ideas suggested by the
participants [9]. We did this by having the first author
review the questionnaire and the recorded interview. Every
time an idea or goal was mentioned, he listed it. This
resulted in 99 (average 3 per user) improvement ideas, with
10 shared main features, and 14 detailed themes in Figure 1.
Then the first author iteratively constructed hierarchical
relationship between them, following “axial coding”
process of grounded theory [2, 9]. As result we found three
high-level goals - organization, efficiency, and information
(Figure 1.)

Finally, selective coding delimits the concepts to those that
are relevant to the core theory. The resulting analysis is an
integrated set of propositions [9], which describe a set of
functional requirements of WebEUP systems.

Transcript with open codes
Subject #18: ... when I have things to buy, I daily check ["Trend
watcher": theme] online shopping malls to find the best deal.
First, I go to Amazon.com and search the product ["Search":
feature]. Today I'm looking for Canon G15... There's no deal
today. Usually I use an Excel spreadsheet to update daily the
price trend ["Archive": feature] and finding the best deal... I'd
like to have a system that collects all the related information
about the product ["Filtered Items": theme], especially the
prices from different sellers and compares them. It will say like
'this is the lowest price for last three weeks' ["Notification":
feature].

Open Coding memo
The subject regularly visits a shopping mall for watching price
trend of a product. He searches for deals, and archives them in
spreadsheet. The improvement should be able to search for
deals, archive the price trend, and send notifications.

Table 1. An example of open coding. The bold words
 [“code”: category] are identified from this transcript.

Ideas for Improving the Web
In this section we describe the three common goals of the
Web improvement ideas.

Organization: End-users wanted to reduce their efforts of
tracking their activities (e.g. browsing history) and timely
information on the Web (e.g., price trend, deals, upcoming
events, video and news).

[Archiving own activity] P17: I want to manage all the
companies I've already applied.

[Trend watcher] P22: In Amazon.com, a price goes up
and down hourly. CamelCamelCamel.com is very useful,
but it only supports Amazon.com. I wish there exists a
price trend watcher for popular shopping sites.

Efficiency: The most common goal was to do their tasks in
more efficient ways. The end-users told many causes of
inefficiency including advertisements, poor UI designs,
verbose terms and conditions, and also lack of essential
information. They suggested solutions such as emphasizing
important information, removing unwanted elements,
automating repetitive operations, redesigning UI, and
attaching additional information. A few of them are shown
below.

[Attaching additional information] Details extracted
from linked pages, file download, mouse and keyboard
operations, and form fill-in

P16: The web page does not show the important
deadlines and information of each event. I want the
list shows what I need when printed out.

[Automating repetitive operation] File download, mouse
and keyboard operations, and form fill-in

P7: At Google image search as well as Google scholar
results (PDF or PS files for direct downloads, I wish
each 'download' link would also provide a check box
next to it, so that I can check off multiple entries and
download them all.

[Emphasizing key information] Removing / dimming /
folding unnecessary elements

P6: At any T&C page, I want to see the summary of
terms and conditions important to me.

[Conversion] Currency, time zone, and metrics
P7: I visit some websites that involve online contests
of some kind (e.g. coding competition), and if the
contest start/end times are automatically converted,
that will be useful...

[Redesign UI] P23: When I'd like to buy a cloth, I cannot
directly pick it up. But I need to remember the product
name, scroll up and find the name in this option list. I'd
love if there were a button to each product, so I can click
it to buy.

Information: Web end-users also wanted more information
especially when making decision. For example, viewing
other people's reviews about files, videos, sites, and
products would be extremely beneficial. Cross-validating
information from multiple-sources is a common technique
for informed decisions.

[Social Review] Quality of sites, page, product, streaming
video links, and files

P12: At Underground TV show sites, I have to try
every link until I find the first link working. By
working, I mean the show must be high-resolution, not
opening any popup, and most of all as little Ad as
possible.

[Automated Search] P22: When buying accessories or
bags, I search Google images or YouTube videos to check
how they would look in different situations.

Characteristics of the Improvements
We found three common characteristics of the suggested
improvement ideas. Summing them up, we hypothesize
that future WebEUP systems must enable end-users to

www.manaraa.com

create, modify, and extend extensions with wide range of
design details and interactive UI components.

Wide range of design details
Even when two users wanted the same improvement, they
might need entirely different designs in detail. For example,
we observed three participants suggested adding custom
shortcuts ideas having a wide spectrum of design details
such as:

 Triggers: Define when the app should run. For
creating shortcuts, triggers could be every page of the
site, front page only, or another site.

 Placement: Where the shortcut will be attached in the
page. (E.g. top / side of the page)

 Content: How the amount of information to be
shown. (E.g. graphical button / text link / information
widget)

 Configuration: Whether a new shortcut is inferred
from the browsing history or configured manually,
including how the configuration would work.

Other types of improvements such as adding information
(placement, contents), emphasis (filtering logic,
style/font/color/size), notification (via email/message/page,
frequency, and contents), and removal (Remove/Dim/Fold,
Automated/Interactive) showed similar variations.
Moreover, many participants told us that the details are not
final and might be revised later on. It indicates that end-
users want to continuously modify and customize
improvements rather than always use off-the-shelf
extensions.

Runtime Interactivity
Due to the dynamic nature of the Web, it is very hard to
build a robust program that satisfies every one's needs.
According to our interview, end-users were concerned with
potential errors or malfunctioning behaviors of the
extensions they installed. They also had to turn the
extensions off if there was no easy way to fix it.

P14: Extensions are useful for the first place, but it often
hinders as well. For example, 'Popup blocker' often blocks
necessary popups, so I turned it off from then.

A common solution is to enable users to control the
extension with interactivity. Placement and Content
mentioned in the previous section are good examples of
interactive UI components. For example, a participant
explaining the idea of Metric/Time conversion wanted to
show the converted numbers when the mouse cursor
hovered over them. According to this pattern, future
WebEUP systems should enable end-users to design
interactivity components with event-handlers and sub-
procedures.

Extending and Combining Ideas
End-users mostly started with single-feature ideas,
however, and would then extend them with additional

features. For instance, a participant started with an idea of
emphasizing filtered elements, and extended the initial idea
with archiving and notification features.

P4: I want these conferences are filtered by deadline, for
example, showing conferences whose deadlines are at
least 1-month from now. Also, if possible, the filter can
look at descriptions of each venue and choose ones
containing at least three relevant keywords.

… Instead of visiting this site regularly, I hope the filter
sends me emails of weekly filtered CFPs on every Friday.
The email would contain title, link, deadline, and relevant
keywords.

… I don’t want it to send the same list of conferences
again and again. So, there could be a web page
containing all the conferences the filter has found. The
weekly emails highlight newly added calls.

Functional Requirements of Future WebEUP Systems
We propose functional requirements of future WebEUP
systems that can cover the suggested ideas.

(1) Extraction is an essential feature of WebEUP used by
most improvement ideas. Whenever an improvement needs
to use information or modify elements on Web pages, the
improvement must know the extraction query for the
elements or information. To find the right query, WebEUP
systems usually accept a set of examples from the end-user,
and infer a consistent query (i.e. jQuery or XPath) for the
examples [6, 7, 8, 15, 27, 29].

(2) Data Transformations including arithmetic operations,
filtering and aggregating data / elements, and string
manipulation in Table 2 are important features of design
details and interactive UI components. However, because of
its complex usage, most WebEUP systems support limited
set of data transformation features targeted to advanced
users. However, Gulwani et al [10] showed that complex
string manipulation programs could be inferred from input
and output examples. We believe future WebEUP systems
employing AI-based techniques will be able to support data
transformations without overloaded syntaxes or options.

Type Details

Arithmetic Add, Subtract, Multiply, Divide
 E.g. Add([1,2,3], [4,5,6]) [5,7,9]

String
manipulation

Get / Replace substring with regular
expression

Filter Filter by numeric equations (e.g. ==, !=, <, <=)
 E.g. Filter([15,3,4],divisible,3)[15,3]

Filter text elements matching with regular
expression
 E.g. Match([“aa”,”ab”,”baa”],/aa/)[“aa”,”baa”]

Aggregate Count, Sum, Average, etc.
 E.g. Sum([1,2,3]) [6]

Concatenate multiple lists of strings
 E.g. Concat([“3”,”6”],[“br”])[“3br”,”6br”]

www.manaraa.com

Table 2. Types of Data Transformation

 (3) Creating new DOM elements such as text, image, and
button elements, and even collections of multiple elements
is required to cover the wide range of design details.
However, similar to Data Transformations, most existing
WebEUP systems have little support for creating DOM
elements. An alternative way is to leverage existing
elements on the Web and AI. For instance, Kumar et al [14]
have proposed a structured-prediction algorithm that
automatically transfers content from one page into the style
and layout of another without showing a large number of
style options to end-users.

(4) Modifying existing DOM elements is a common
feature of web customizers [1, 16, 32], and also was
required by our participants for Custom Filter and Redesign
ideas. Modifiable element properties include visibility
(hide/show element), size, font, and color, mostly done by
editing CSS (Cascade Style Sheet) properties.

(5) Simulating keyboard and mouse interaction is
required for automating repetitive tasks [1, 15, 18]. Form
fill-in apps, for instance, simulate keyboard press events in
a specific input box. Programming-by-Demonstration is the
best way support this feature.

(6) Data Storage allows a script to remember and share
data among users. For example, the Archive and Redesign
UI with shortcuts ideas need private storage to store and
retrieve user's behavior and preferences. Social
improvements such as Recommendation require public
storage to share information between users. To our
knowledge, no existing WebEUP system allows end-users
to set up and use their in-app storage.

(7) Event Handling and Sub-Procedures can improve
robustness and usability of any app by adding runtime
interactivity to it. Moreover, composing multiple sub-
procedures is the best way to handle bigger programs.
However, it is challenging for end-users to understand and
handle complex structure of non-linear program structures.
Most existing WebEUP systems do not fully support sub-
procedures (except some script languages [1, 32]).

We believe the seven features above are equally important
for expressive WebEUP systems. However, providing all of
them in a single WebEUP system would be too complicated
to learn for end-users. In the next user study, we look for
novel opportunities by investigating non-programmer's
mental models.

STUDY 2: NON-PROGRAMMER’S MENTAL MODEL OF
COMPUTATIONAL TASKS
Programming languages are difficult to learn because their
fundamental structure is not natural to non-programmers
[22]. For instance, common programming language syntax
such as looping [26], if-then conditional [19], and variable
referencing [17] are quite different from spoken languages.
Pane and Myers [22] identified the characteristics of non-

programmers describing computational tasks in written
statements. Our goal is similar, but paying attention to
conversational dialogues and multi-modal intents including
verbal statements, behavioral signals (e.g. page navigation,
mouse click), gestures, and drawing on scratch paper. The
data was gathered from 13 participants, who are 5 males
and 8 females, average 33.3 years old (STD=5.86) with
varying occupations and educational backgrounds. They
were recruited by word-of-mouth. None of them had
programming experience.

Method
The participants were asked to explain common
computational tasks via conversational dialogue with the
interviewer who acted like a hypothetical computer agent
following the set of rules listed below.

 The computer (acted by the interviewer) can
understand the programmer's intent (question,
instruction, and statements) expressed in natural
language, gestures, and drawings.

 The computer cannot infer semantic meaning of
programmer's intent. For example, a rental posting “4
Bedrooms 3 Lvl Townhome $1650 / 4br” is merely a line
of text to the computer. Thus the programmer has to
explain all the semantic meanings.

 The computer executes the programmer's instruction
only if it is unambiguous and complete. Otherwise the
computer tried to resolve it through conversational
dialogue like below:

Programmer: Delete houses with less than three
bedrooms.

Computer: Please tell me more about ‘houses with
less than three bedrooms’. Which part of the
page is relevant?

 When the programmer demonstrates a set of
examples, the computer will suggest a generalizing
statement like below:

Programmer: Delete this one because it contains
3br.

Computer: Do you want me to delete every line
that has 3br?

We carefully designed three tasks to cover common
situations in the improvement ideas. A sheet of paper
containing basic instruction was provided, and the
participants could draw or write anything on the paper as
shown in Figures 2 and 3.

Task 1. Drawing Histogram: With 10 random numbers
between 0 and 12, the participants were asked to complete a
histogram having 4 empty bins (0~3, 3~6, 6~9, and 9~12).
We wanted to observe how non-programmers would
describe: 1) a set of common data-processing operations
such as iteration, filter, and count and 2) drawing a bar
graph.

www.manaraa.com

Task 2. Custom Filter: We prepared 10 rental postings in
Table 3 copied from Craigslist.com. The participants were
asked to create a filter that removes houses having fewer
than 3 bedrooms. The task consists of three sub-tasks. The
first task is to extract sub-strings about bedrooms (e.g.
3br(s), 3bedroom(s), 3 BEDROOMS, 3/2, studio) from
every posting. Second, a predicate for selecting sub-strings
of fewer than three bedrooms is required. The last sub-task
is to hide / remove the selected houses. This task aims to
observe how non-programmers would decompose a big task
into sub-tasks, specify extraction queries, and refer
temporary variables such as sub-strings and selected
postings.

Task 3. Pulling information from detail pages: At
Amazon.com, the product list does not show available
colors of each product. Task 3 is to create a mashup script
that automatically takes the available colors from the detail
page, and attaches them to the product list page. When the
mouse cursor is over the color thumbnails, the full-size
photo should appear. The task is designed to observe how
non-programmers would describe copy operations across
multiple pages, and event handling.

Analysis
For qualitative and flexible interpretation of the data, we
employed an iterative coding technique inspired by
constructive grounded theory [2]. Instead of testing
predefined hypotheses with unbiased measuring, the
researcher was actively involved in the process of the
participants doing the tasks, and iteratively constructed new
hypotheses.

Each session was video recorded and transcribed by the
first author. The transcript consists of sequential statements
that contain conversational dialogue 2 between the
participant and the interviewer, page navigation in the
browser, mouse or finger pointing gesture, and drawings on
the task instruction paper (Figures 2 and 3). Each task
consists of 3-8 statements. Following the guidelines of
grounded theory [2], we started open coding focusing on
how the participant described an instruction and what
challenge the participant was experiencing. While
repeating the coding process, a few categories of the codes
emerged as programming styles (Table 4), imperative

2 If the participant spoke in another language (the native
language of the interviewer), we translated it into English.

commands (Table 5), ambiguities (Table 6), and multi-
modal intent (Table 7). In the tables, the left columns of the
tables (e.g. Rule‐Example in Table 4) contain codes, and the
right columns show memos and statements. Due to the
nature of qualitative approach we used, we report both
findings and our interpretations together in the following
section.

Findings and Discussion

General Challenges
At the beginning, the participants had no idea how to
communicate with the computer. Most of their initial
statements were ambiguous and underspecified as
underlined in the examples below.

P5: First, I scan the list with my eyes and exclude them.
They clearly stand out.

 Computer: Why do they stand out?
P8: I'd order, “Exclude houses with one or two
bedrooms.”

 Computer: How can I know the number of bedrooms?

“You want to create a filter that removes houses having less
than 3 bedrooms. How would you explain it to the computer?”

• Brand New Townhome! $2200 / 3br - 1948ft² - (Clarksburg)

• Lanham 2/1 new deck $1050 / 1818ft² - (Lanham)

• 4 Bedrooms 3 Lvl Townhome $1650 / 4br - (MD)

• 823 Comer Square Bel Air, MD 21014 $1675 / studio

 … (6 more)…

Table 3. Housing rental postings collected from Craigslist.com

Figure 2. A histogram of Task 1 drawn by a participant.

Figure 3. Task 2 sheet drawn by a participant

www.manaraa.com

P11: I'd ask computer to show available colors of this
Columbia shirt.

 Computer: Where can I get those colors?

To clarify ambiguous instructions, the computer asked
further details. Through the conversational dialogues, the
participants gradually understood what to explain and how
specific they should be. We paid attention to the challenges
the participants were experiencing. For example, most
participants were clueless (see the following quotes) when
explaining how to draw a bar chart in Task 1.

P12: Wouldn't computers draw graph when numbers are
assigned? I'm asking because I have no idea.
P11: Find the numbers, and draw them at the first bin.
(Computer: How can I draw them?) What should I tell?
Color?

Describing the right extraction query in Task 2 turned out to
be challenging to many participants. Only 30% of the
participants found all the rules. Although we did not
emphasize correctness of the programs specified, the
participants seemed to be more interested in completing the
program than the correctness of their filtering logic.

Programming Styles
While traditional programming environments support
imperative commands only, our non-programmer
participants used five styles in combination as summarized
in Table 4.

Style Memos & Example Statements

Rule‐
Example
or
Example‐
Rule

Switching between rules and examples is a
common approach to generating sound and
complete logic.

P10: For here (pointing the first column), we need 0,
1, and 2. Find numbers including zero, smaller than
two. No, three.
P4: Determine which bin each number is in. If the
number is 1 (which is the first item), then count up
this bin.

Iterative
Refinement

Instead of following logical order, non‐
programmers would start from broad, under‐
specified, or partial statements, and gradually
add details.

P1: Attach pictures here. The pictures are taken from
the page. The page is loaded from…
P13: I guess it's easier to say, “Don’t do”, “Don’t do
1 and 2”. So, for 3, “not 2b, 2 b, 2/” and “Not 1b, 1
b, and 1/”.

Sequence of
Imperative
Commands

Using linear sequences of imperative commands
is a traditional programming style.

P7: In the detail page, copy all these colors. And
paste them after the name or next to the picture. Then
go to the next product.
P9: Looking at the columns here, count up the
numbers 0,1,or 2 items. Put them here.

Stepwise
Selection /
Filtering

To specify a set of elements or data, non‐
programmers use multiple steps of selection
queries or conditional predicates.

P10: First find numbers '3' and '4'. Then, select the
numbers ahead of 'br' or 'bedroom'.
P6: …below the product title, there are sizes of the
product and color text. In the color text, there's a list
of images we are looking for.

Event & Sub‐
Procedure

Assigning events that trigger sub‐procedures.
P4: When we get the signal that the cursor is on each
icon image, we replace the main image section with
the bigger version of the color.
P11: There would be a button to open the popup.
'Quick view'. When the button is clicked, it shows

color or size information of the product.

Table 4. Five Programming Styles of Non-Programmers

Imperative Commands
How would non-programmers refer to basic commands
without prior knowledge? First of all, each command has
many names as listed in the left column of Table 5. Often a
participant referred to a command with different names
even in a single task. We also found that those commands
are ambiguous and incomplete without contextual
information. All the participants relied on the current
situation, multi-modal intent, and examples to clarify their
intent.

Commands Example Statements

Find / Search /
Pick / Highlight
/ Look for /
Choose within

P9: In this next column, we need items going 6,7,8.
So please find those 6,7,8 items, and draw bar in this
column.
P10: Find numbers including zero, smaller than
two.. no, three.”
P13: I want highlight these things. (She selected all
the color thumbnails in a detail page) Then I want
to say 'copy'.

Copy & Paste /
Bring

P5: Copy these colors. And Paste them out there.
P11: Then I would ask computer to open a new
detail page, and to bring the color information in the
page if colors exist.

Go / Open P7: Go into every product, and show available
colors here below the description.

Draw / Create P8: Draw bar graph for each number. Hmm...
Create box as many as the number and stack them
up.
P15: Can we create a small window here (next to
main image) showing colors?

Filter out /
Hide / Delete

P13: I want to computer use control-F to search on
the page, and do these things. And eliminate those
lines found.

Count / How
many

P14: Can I ask questions to computer? How many
dots do we have between 3 and 6?
P4: Determine which bin each number is in. If the
number is 1 (which is the first item), then count up
this bin.

Table 5. Imperative Commands Used by Non-Programmers

Ambiguities in User’s Intent
Natural language tends to be underspecified, and
ambiguous [22]. Even after figuring out what they need to
explain, most participants skipped a few types of crucial
information summarized in Table 6. In our opinion, these
ambiguities are not necessarily problematic. Provided that
the missing information can be automatically inferred, they
are good opportunities for more efficient and natural
programming. For example, Implicit Iteration can be
detected by checking whether the operand is the first item
of any list.

Missing info. Memos & Example Statements

Implicit
iteration

Specifying process for the first few items, but
expect it to be applied to every item. The
resolution is repeating the same operation to
the items in the list.
P14: Computer, take this and open a new tab. Then
take different colors and put here.
P20: Okay. I want you to display right here
(pointing the first product) all the different color
options. (Interviewer: “Only for this item?”) No for
every item.

www.manaraa.com

Ambiguous
keywords of
control
structure

Control structures are difficult concepts. A
few keywords (e.g. each, when, if, then) are
used in iterations, conditionals, event‐
handlers, and set operations. The correct
structure can be inferred from user‐provided
examples.
P19: Show colors when I click the photo.
P23: If there are two items, draw it like this.

Reference by
value

Instead of variable names, a variable is
referred by its value. Actual references can
be inferred by the value.
P20: In this next column, we need items going 6,7,8.
So please find those 6,7,8 items, and draw bar in
this column.
P21: As we have two, draw two here.

Contextual
Referencing

Instead of unambiguous variables or query,
non‐programmers use pronouns, data type,
pointing gesture, and semantic proximity.
e.g. “Add photos here. (Interviewer: What Photo?)
Oh... You know, there's only one set of photos.”
e.g. “Copy these colors. And Paste them out there.”

Skipping
attribute key
of objects

Without knowing the object structure, non‐
programmers would not use keys to get
attributes. Having an Inspector UI can resolve
this ambiguity.
e.g. “Here are '1 bedroom' and '2 bedrooms', they
can be crossed-out. Erase 2 bedrooms. Remove
'2br' and '1br'. Remove '2/3'. Remove 'studio'.
Remove '1bedroom’.”
e.g. “Search these text, and I would say... erase
them from the web page. Then it will just erase them
(elements containing searched text).”

Table 6. Common Ambiguities in Non-Programmer's Intent

Multi-modal intent
Every participant effectively used multi-modal intent
including voice, gesture, and page navigation. Voice
usually expressed the main part of their intent such as
command, logic and other control structures. When
referring to positions, shapes or elements, they commonly
used pointing gestures with pronouns (e.g. this, here). They
also used page navigation to change the scope of the
operation. We found multi-modal intents are intuitive,
natural and effective way for non-programmers to express
computational tasks.

Multi‐modal intent Example Statements

Voice(command)
+ Gesture(position)
+ Navigation(scope)

P4: These small icons of products in
different colors. I want to copy an area that
holds those icons, and link here (pointing
below the price) in the list page.
P12: Then, count the numbers of items here
(pointing the number in 0~3) and draw
(showing gesture of drawing rectangle).

Voice(logic)
+ Gesture(position)
+ Navigation(scope)

P6: (Pointing at the '3br' part of the first
item) "This has three, which is more than
two, so this is not the case."
P13: And then, here's 11. No(pointing 0~3),
no(3~6), no(6~9),... (She put one finger on
the value in the list, and moves another
finger and the pen on different ranges in the
graph ‐ similar with data cursor)

Table 7. Multi-model Intent of Non-Programmers

Rationales and Challenges
We consistently observed that non-programmers expressed
rationales (why they need this statement or program) and

challenges (why the problem is difficult to solve). It was not
clear that the participants expected the computer to perform
any action in response. However, both in real-world
conversation between people and mixed-initiative systems,
rationales and challenges are effective ways to build mutual
understandings about the scope, goals, activity, and
constraints [13]. To our knowledge, how to utilize them in
EUP systems has not been studied yet.

P6: Let's say I want to buy a polo shirt in pink color. I
click this shirt, then it shows all the colors available. But
people want to check the colors in listing as well. So, put
some buttons here to click and check what colors are
available.
P6: While we can show images, which would be quite
complex, I'd want you to do use color boxes.
P12: By the way, because of 'at least three bedrooms', pick
things larger than 3.
P13: We can also secretly write number here (center of
each cell) to remember, so track for afterward so we didn't
make any mistake.

DESIGN IMPLICATIONS
This section presents design implications in response to the
findings in our studies for building easy, efficient, and
expressive WebEUP systems. Although we focused on
WebEUP, many of these implications are also applicable to
general programming environments.

Unified Support For Five Programming Styles
The usability of programming environments could be
improved by supporting a programming style (e.g.
imperative, rule-based, and event-driven) suited for the task
[22]. We also consistently observed that end-users
employed combinations of the five programming styles we
found such as an example scenario based on the first user
study:

Tim wants to create a custom notification on an online
marketplace. He wants to receive emails when there is a
new posting that contains the configured keywords. First,
he read through the list and selects a few interesting
postings. The system automatically infers the correct
conditional logic (Rule-Example). Then he assigns a
mouse-over (Event) to the top-most selected call, which
will show detailed information about the post (Sub-
Procedure). The system will automatically assign same
event handler to all the items (Rule-Example). He tests
each item, checking whether the email alert program he
created will support him better.

To our knowledge, there is no WebEUP system equipped
with unified support for the five programming styles.
Scripting languages and visual programming environments
[7, 15, 18, 29, 32] accommodate imperative commands and
event handling, but they do not support Rule-Example and
iterative selection / refinements. PBD / PBE systems [3, 10,
30] focus on Rule-Example and Iterative refinement /
selection in specific task domains, but building bigger
programs that contain event handlers and sequential
commands would be challenging.

www.manaraa.com

Mixed-Initiative Approach
In the second study we observed that the participants and
the computer could converge to the solutions through
conversational dialogues, which was analogous to mixed-
initiative interaction model [12]. For instance, the Rule-
Example and Iterative refinements of Table 5 and resolving
implicit iteration, control structure, and ambiguous
keyword in Table 6 involve a sort of human-computer
collaboration where the end-users express their intent and
then the computer infers and suggests corresponding
solutions. With the mixed-initiative interaction, the learning
curve of its users becomes much lower than menu-driven
tools or traditional programming languages [11]. Also
mixed-initiative systems can avoid the risk of a fully
automated system by leveraging human skills.
Nevertheless, the core challenge of mixed-initiative
interaction [13], grounding to mutual understanding
between end-users and the computer, still remains. The
following sections will address ideas for creating common
grounding.

Enhancing Iterative Refinement
When initially creating a new program, non-programmers
often did not specify statements in the order that those
statements should run. Instead, they started with quick and
brief statements such as task outlines, goals, or partial
solutions (e.g. the first step of a query, or a single case of
filtering). All the non-programmers made a lot of mistakes
in the first trials. Then they iteratively added details while
trying it on examples. When the program looked good
enough, they wrapped up the program by cleaning up
unnecessary details.

Here we propose three potential ways to support iterative
refinement. First, EUP systems should allow users to sketch
programs with missing details, and recommend possible
ways to fill in those holes. For example, if a user selected a
button and modified its text, the computer could
recommend 1) repeating the same operation on similar
buttons in the page, 2) candidate logic of getting new text
for selected buttons, and 3) adding next steps of operation
on those buttons.

The second type of support is to automatically group
redundant statements with refactoring techniques in
software engineering. Imagine a scenario below (based on a
story from the second study).

Alice wants to remove houses on Craigslist that have one
or two bedrooms. She first selects postings containing ‘1
br’ and ‘2 br’, and deletes them. She keeps on deleting
houses with ‘1 bedrooms’, ‘2 bedrooms’, ‘1/’, ‘2/’, and so
on. When she deletes all the houses, the computer
refactors the series of delete commands into one such as -
Delete postings containing ‘1’ or ‘2’ followed by
‘bedroom’, ‘br’ or ‘/’.

The last type of support is the creation of semi-automated
unit tests. In the second task (Custom Filter task), we
observed that 70% of participants had underspecified filters

that were missing at least one string pattern. In order to
prevent this, the EUP system should enable users to see the
result of the current program, and quickly verify it.

FUTURE WORK
Instead of giving a conclusive answer, this paper proposed
many ideas and open questions. In fact, the authors are
currently developing a novel WebEUP system based on the
ideas. For instance, tapping the channel of user's behavioral
intent to mixed-initiative systems is an interesting direction
that requires further exploration. Also, how to support
mutual understanding between computer and human
requires iterative design process.

CONCLUSION
Understanding end-users’ needs is a crucial part of the EUP
system design process. The two qualitative user studies in
this paper investigated 1) what end-user's want to build with
WebEUP, and 2) how non-programmers would express
computational tasks. From the first study we suggested 7
functional requirements of future WebEUP systems that
enable end-users to create, modify, and extend extensions
with design details and interactive UI components. The
second study result consists of challenges and opportunities
of non-programmers showing their intent. Although we set
WebEUP as our target domain, we believe that the insights
are informative to improve usability of general
programming environments.

ACKNOWLEDGMENTS
<Removed for blind review>

REFERENCES
1. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller,

R.C. Automation and customization of rendered web
pages. Proceedings of the 18th annual ACM symposium
on User interface software and technology, ACM
(2005), 163–172.

2. Charmaz, K. Grounded Theory: Objectivist and
Constructivist Methods. (2000).

3. Cheema, S., Gulwani, S., and LaViola, J. QuickDraw:
improving drawing experience for geometric diagrams.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2012), 1037–
1064.

4. Cypher, A., Dontcheva, M., Lau, T., and Nichols, J. No
Code Required: Giving Users Tools to Transform the
Web. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2010.

5. Cypher, A., Halbert, D.C., Kurlander, D., et al., eds.
Watch what I do: programming by demonstration. MIT
Press, Cambridge, MA, USA, 1993.

6. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., and
Gandhi, P. Intel Mash Maker: join the web. SIGMOD
Rec. 36, 4 (2007), 27–33.

7. Fujima, J., Lunzer, A., Hornbæk, K., and Tanaka, Y.
Clip, connect, clone: combining application elements to
build custom interfaces for information access.
Proceedings of the 17th annual ACM symposium on

www.manaraa.com

User interface software and technology, ACM (2004),
175–184.

8. Gardiner, S., Tomasic, A., Zimmerman, J., Aziz, R., and
Rivard, K. Mixer: mixed-initiative data retrieval and
integration by example. Proceedings of the 13th IFIP
TC 13 international conference on Human-computer
interaction - Volume Part I, Springer-Verlag (2011),
426–443.

9. Glaser, B.G. and Strauss, A.L. The Discovery of
Grounded Theory: Strategies for Qualitative Research.
Aldine, 1967.

10. Gulwani, S. Automating string processing in
spreadsheets using input-output examples. SIGPLAN
Not. 46, 1 (2011), 317–330.

11. Guo, P.J., Kandel, S., Hellerstein, J.M., and Heer, J.
Proactive wrangling: mixed-initiative end-user
programming of data transformation scripts.
Proceedings of the 24th annual ACM symposium on
User interface software and technology, ACM (2011),
65–74.

12. Horvitz, E. Principles of mixed-initiative user interfaces.
Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, ACM (1999), 159–166.

13. Horvitz, E.J. Reflections on Challenges and Promises of
Mixed-Initiative Interaction. AI Magazine 28, 2 (2007),
3.

14. Kumar, R., Talton, J.O., Ahmad, S., and Klemmer, S.R.
Bricolage: example-based retargeting for web design.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2011), 2197–
2206.

15. Leshed, G., Haber, E.M., Matthews, T., and Lau, T.
CoScripter: automating & sharing how-to knowledge in
the enterprise. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM (2008),
1719–1728.

16. Macías, J.A. and Paternò, F. Customization of Web
applications through an intelligent environment
exploiting logical interface descriptions. Interacting with
Computers 20, 1 (2008), 29–47.

17. Miller, L.A.. Natural language programming: styles,
strategies, and contrasts. IBM Syst. J. 20, 2 (1981), 184–
215.

18. Miller, R.C., Chou, V.H., Bernstein, M., et al. Inky: A
Sloppy Command Line for the Web with Rich Visual
Feedback. .

19. Myers, B.A., Pane, J.F., and Ko, A. Natural
programming languages and environments. Commun.
ACM 47, 9 (2004), 47–52.

20. Nichols, J. and Lau, T. Mobilization by demonstration:
using traces to re-author existing web sites. Proceedings
of the 13th international conference on Intelligent user
interfaces, ACM (2008), 149–158.

21. Ott, M., Cardie, C., and Hancock, J. Estimating the
Prevalence of Deception in Online Review
Communities. Proceedings of the 21st International
Conference on World Wide Web, ACM (2012), 201–
210.

22. Pane, J.F., Myers, B.A., and Ratanamahatana, C.A.
Studying the language and structure in non-
programmers’ solutions to programming problems. Int.
J. Hum.-Comput. Stud. 54, 2 (2001), 237–264.

23. Rinard, M.C. Example-driven program synthesis for
end-user programming: technical perspective. Commun.
ACM 55, 8 (2012), 96–96.

24. Rode, J., Rosson, M.B., and Qui˜nones, M.A.P. End
User Development of Web Applications. In H.
Lieberman, F. Paternò and V. Wulf, eds., End User
Development. Springer Netherlands, 2006, 161–182.

25. Rosson, M.B., Ballin, J., and Rode, J. Who, what, and
how: a survey of informal and professional Web
developers. 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, (2005), 199–206.

26. Soloway, E., Bonar, J., and Ehrlich, K. Cognitive
strategies and looping constructs: an empirical study.
Commun. ACM 26, 11 (1983), 853–860.

27. Toomim, M., Drucker, S.M., Dontcheva, M., Rahimi,
A., Thomson, B., and Landay, J.A. Attaching UI
enhancements to websites with end users. Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2009), 1859–1868.

28. Tuchinda, R., Szekely, P., and Knoblock, C.A. Building
Mashups by example. Proceedings of the 13th
international conference on Intelligent user interfaces,
ACM (2008), 139–148.

29. Wong, J. and Hong, J.I. Making mashups with marmite:
towards end-user programming for the web.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2007), 1435–
1444.

30. Yessenov, K., Tulsiani, S., Menon, A., et al. A Colorful
Approach to Text Processing by Example. 2013.

31. Zang, N., Rosson, M.B., and Nasser, V. Mashups: who?
what? why? CHI ’08 Extended Abstracts on Human
Factors in Computing Systems, ACM (2008), 3171–
3176.

32. Greasemonkey. https://addons.mozilla.org/en-
US/firefox/addon/greasemonkey/.

33. Yahoo! Pipes. http://pipes.yahoo.com/pipes/.

